

Announcements

Hw1 is available on Gradescope. **Due Friday Jan 30.** All hw counts!! (no drops), but you have 6 late days to use

On all homework problems (expect for coding) you are **always asked to prove any statement you claim.** If you design an algorithm and claim (1) it is correct and (2) runs in polynomial time, you **must prove both statements.**

Solutions to section problems posted on canvas, video ~~will be~~^{is} posted shortly due to cancelled sections

Sections **attendance mandatory, will include a 10 min quiz** about previous hw.

Poll Everywhere: register with your Cornell netid

see Ed for instructions

hw2 will open after class on canvas

1 question coding

2 questions design & analyse algorithms

Dynamic Programming II summary

Smaller subproblems: smaller subproblems whose solution helps solving real problem

- need polynomially many subproblems
e.g. interval scheduling over all subsets (2^n)

Algorithm: Iterative vs. Recursive (memorization: solve any subproblem only once)

build up solutions small \rightarrow big

OK recursive, but store all solutions

Dynamic Programming II summary

Proof of correctness : induction proof
iterative alg. \Rightarrow proof each step correct

Running time

Extracting the solution, not only the OPT value

DP table

Opt value

Option 1: store also
solution

may increase runtime

Option 2: retrace from 'back'
 $\text{Opt}(u)$

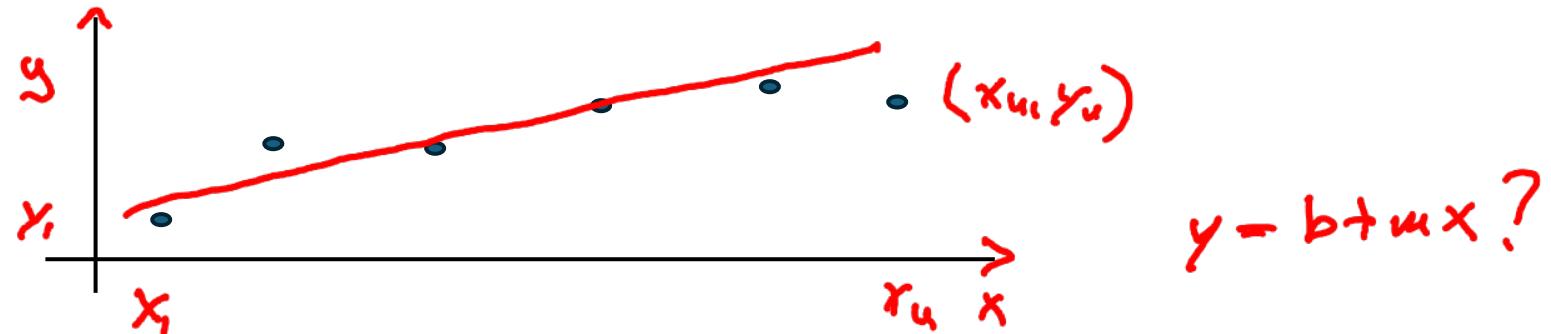
$$\text{Opt}(u) = \max(\text{Opt}(u-1), v_u + \text{Opt}(p(u)))$$

Dynamic Programming II: Segmented Least Squares

Least Squares: fit line

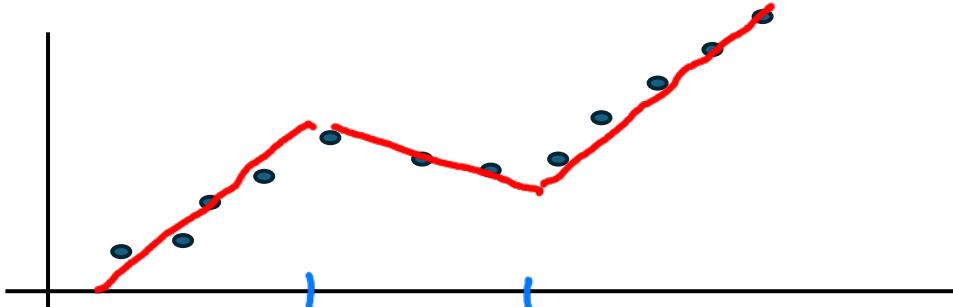
$$y = mx + b \text{ minimizing}$$

$$Err(m, b) = \sum (y_i - mx_i)^2$$



$$\text{Solution: } m = \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i y_i)^2} \text{ and } b = \frac{\sum_i y_i - m \sum_i x_i}{n}$$

Segmented Least Squares: penalty C for using additional segments



3 subintervals

let $e_{ij} = \text{error if single line fit } (x_i, y_i) \dots (x_j, y_j)$

find partition subintervals

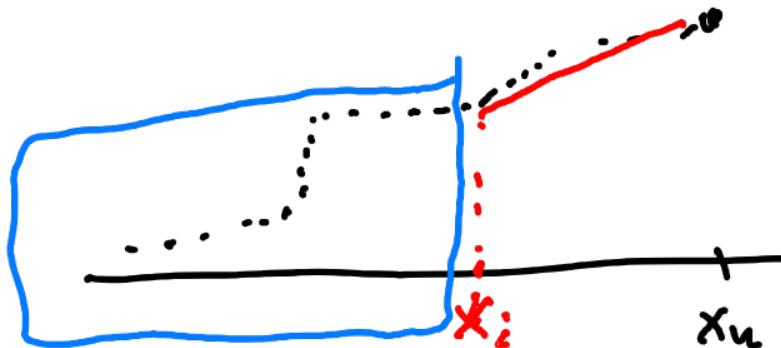
$$\min \sum_{k=1}^e e_{i_k j_k} + C \cdot l$$

at times fitting multiple lines is better

C parameter input

the intervals

Subproblems, and the “final decision”



(1) (x_u, y_u) - should we start separate line, or continue with
 - previous line
 need $Opt(u-1)$ solution points 1..u-1

(2)
 using

beginning of segment including last point
 $[i, u]$

$$Opt(u) = \min_{1 \leq i \leq u} Opt(i-1) + e_{iu} + C$$

$$Opt(0) = 0$$

for $j=1$ to u

~~(*)~~ $Opt(j) = \min_{1 \leq i \leq j} [Opt(i-1) + e_{ij} + C]$ multiway decision
 end for
 Output $Opt(u)$

$Opt(i)$ = best solution for points
 $[1, \dots, i]$

↑ previous cost
 ↓ cost of last segment

Correctness of the Algorithm getting the Opt value natural induction proof.

base $\text{Opt}(0) = 0$

induction step: explain why * correct assuming all previous
 Opt values correct

Note: last decision picks start x_i of last segment

Extracting the solution itself

last decision $\min_i \text{Opt}(i-1) + e_{ijt} <$

\Rightarrow last interval $[i, u]$

next check equation for $\text{Opt}(i-1)$

:

Join by Web PollEv.com/evatardos772

What is the running time of the algorithm we designed?

- A. $O(n)$ time
- B. $O(n \log n)$ time
- C. $O(n^2)$ time
- D. $O(n^3)$ time
- E. $O(2^n)$ time

n iterations
 $O(n)$ per iteration
 $\leq n$ options for i
if e_{ij} is pre-computed
computing e_{ij}
 $O(n^3)$

$Opt(0) = 0$
For $j = 1 \dots n$
 $Opt(j) = \min_{i \leq j} Opt(i-1) + C + e_{ij}$
end for
Output $Opt(n)$
trace back to find
solution
OK to store solutions with Opt